ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
J. E. Klein
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 542-550
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22648
Articles are hosted by Taylor and Francis Online.
In-bed accountability (IBA), a steady-state, flowing gas calorimetric method, has been implemented for production measurement of tritium inventories in metal hydride storage beds utilizing a LaNi4.25Al0.25 metal hydride alloy. Six-point calibration curves have been completed for six, nominal 390 gram, and two nominal 1310 gram tritium metal hydride storage beds. The equations used to calculate inventory errors are derived and presented in the Appendix. Beds with the same amount of insulation gave similar IBA calibration curves and bed temperature versus tritium inventory results. Tritium IBA inventory measurement errors varied slightly with bed inventory and maximum values at the 95% confidence level ranged from 4 to 9 grams for the 390 gram beds (1.1 to 2.6%) and from 8 to 13 grams for the 1310 gram beds (0.7 to 1.2%). Comparison of other methods for determining inventories on the same beds (hydride pressure, hydride bed temperature, and hydride bed temperature rise above the glove box temperature) showed the IBA method gave the highest accuracy tritium measurements. These other inventory methods also showed greater variability in measurement error over the range of tritium inventories, van't Hoff plots of hydride bed pressure under steady-state IBA conditions revealed a reduction in hydride pressure after several months of tritium service compared to other beds without tritium exposure.