ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Hubert Pialot, David Demange, Brice Ravat, Manuel Grivet
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 495-499
Analysis and Monitoring | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22638
Articles are hosted by Taylor and Francis Online.
This paper presents a method to quantify the tritium activity in a drum by measurement of its helium-3 leak. A model of helium exchanges with the atmosphere has been developed. It takes into account the diffusion phenomena and the influence of atmospheric pressure changes. The validation has been achieved with a pilot and the comparison between theoretical and experimental data has highlighted a very good agreement. Drum's helium-3 leak equilibrates after six months and then equals the helium-3 production in the drum and so to the total tritium activity. The measurement technique is also described. It's based on quantitative helium trace level determinations with an adapted leak detector. After a drum's confinement period of 5 hours and a cryogenic treatment of gaseous samples, the method allows to detect a 5 GBq activity of tritium in a drum.