ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
A.V. Golubev, M.M. Khabibulin, S.E. Misatyuk, Y.A. Belot, A.Y. Aleinikov, V.P. Kovalenko, S.V. Mavrin, V.N. Golubeva, I.I. Solomatin, T.A. Kosheleva
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 474-477
Environment | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22634
Articles are hosted by Taylor and Francis Online.
There are presented in the research results of HTO washout and the model of HTO atmosphere concentration in the vicinity of a long-term HT and HTO emission source. The site of the scavenging experiments was around a 30 m emission source. The sampling arcs were chosen at 150–300 m from the base of the source to minimize dry deposition on the precipitation collectors. To study dependence of scavenging of tritium on raindrops characteristics, an optical device was constructed and used to measure the distribution of the drop radii and velocities during the period of experiment. The washout model, used for assessments, takes into account dispersion, deposition and re-emission. The model of HTO wet deposition is taken into account kinetics of HTO exchange between vapor and liquid phase with parameters such as rain drop spectra, rain intensity, condensation-evaporation on drop's interface. Gauss type formulae for permanent emission source is used to calculate HTO atmospheric concentration. Meteorological data are used as input parameters for modeling.