ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Hiroshi Takeda, Shoichi Fuma, Kiriko Miyamoto, Kei Yanagisawa, Nobuyoshi Ishii, Noriko Kuroda
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 445-449
Biology | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22629
Articles are hosted by Taylor and Francis Online.
The purpose of the present study is to develop an accurate and practicable method to estimate an internal dose after exposure to tritium in various chemical forms. In rats exposed to tritiated water (HTO) or some tritiated organic compounds by single ingestion, the concentrations of total tritium and organically bound tritium (OBT) in blood and various organs were determined at various time intervals after ingestion. The concentrations of total tritium in blood showed a tendency to be higher than those in the majority of organs. When the cumulative doses to blood and organs for 100 days after ingestion of various tritiated compounds were compared, the doses to blood were almost the same or higher as compared with the maximum doses to organs. These results indicated that blood analyses would be useful to estimate a maximum of internal doses for exposure to tritium in various chemical forms. It was also suggested that the concentration ratio of OBT to total tritium in blood could be used to deduce the chemical form of tritium at exposure and the elapsed time after exposure.