ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shigeo Yoshida, Isao Murala, Akito Takahashi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 432-436
Biology | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22626
Articles are hosted by Taylor and Francis Online.
Handling of a large amount of tritium and tritiated contaminants had been carried out many times repeatedly in the OKTAVIAN facility which is an accelerator of Cockcroft Walton type to produce 14 MeV fast neutrons by D-T reaction. To estimate the dose due to internal exposure following intake of tritium, the distribution of tritium concentration has been measured with the bioassay method and the liquid scintillation counting method by using bioassay samples in man such as urine, exhaled water and so on. On the basis of their many tritium concentration data accumulated in the OKTAVIAN facility until now, a new tritium metabolic model has been developed by modifying a conventional three-compartment model known as the most famous model. The present model was verified using measured data, and compared with other models proposed previously.