ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Shigeo Yoshida, Isao Murala, Akito Takahashi
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 432-436
Biology | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22626
Articles are hosted by Taylor and Francis Online.
Handling of a large amount of tritium and tritiated contaminants had been carried out many times repeatedly in the OKTAVIAN facility which is an accelerator of Cockcroft Walton type to produce 14 MeV fast neutrons by D-T reaction. To estimate the dose due to internal exposure following intake of tritium, the distribution of tritium concentration has been measured with the bioassay method and the liquid scintillation counting method by using bioassay samples in man such as urine, exhaled water and so on. On the basis of their many tritium concentration data accumulated in the OKTAVIAN facility until now, a new tritium metabolic model has been developed by modifying a conventional three-compartment model known as the most famous model. The present model was verified using measured data, and compared with other models proposed previously.