ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Hiromasa Ninomiya, Akio Kitsunezaki, Masatsugu Shimizu, Masaaki Kuriyama, JT-60 Team, Haruyuki Kimura, Hisato Kawashima, Kazuhiro Tsuzuki, Masayasu Sato, Nobuaki Isei, Yukitoshi Miura, Katsumichi Hoshino, Kensaku Kamiya, Toshihide Ogawa, Hiroaki Ogawa, Kengo Miyachi, JFT-2M Group, Satoshi Itoh, Naoaki Yoshida, Kazuaki Hanada, Kazuo Nakamura, Hideki Zushi, Mizuki Sakamoto, Eriko Jotaki, Makoto Hasegawa, TRIAM Group
Fusion Science and Technology | Volume 42 | Number 1 | July 2002 | Pages 7-31
Technical Paper | doi.org/10.13182/FST02-A210
Articles are hosted by Taylor and Francis Online.
Research activities of the Japanese tokamaks JT-60U, JFT-2M, and TRIAM-1M are described. The recent JT-60 program is focused on the establishment of a scientific basis of advanced steady-state operation. Plasma performance in transient and quasi steady states has been significantly improved, utilizing reversed shear and weak shear (high-p) ELMy H-modes characterized by both internal and edge transport barriers and high bootstrap current fractions. Development of each key issue for advanced steady-state operation has also been advanced. Advanced and basic research of JFT-2M has been performed to develop high-performance tokamak plasma as well as the structural material for a fusion reactor. Toroidal field ripple reduction with ferritic steel plates outside the vacuum vessel is successfully demonstrated. No adverse effects to the plasma were observed with poloidal fields inside the vacuum vessel (partial covering). Preparation is in progress for full-scale testing of the compatibility of the ferritic steel wall (full covering) with plasma. A heavy ion beam probe has been installed to study H-mode plasmas. Compact toroid (CT) injection experiments are performed, showing deep CT penetration into the core region of the H-mode. The TRIAM project has investigated steady-state operation and high-performance plasma of a tokamak with the high toroidal magnetic field superconducting tokamak. Four important contributions in the fields of fusion technology of superconducting tokamaks, steady-state operation, high-performance plasma, and startup of plasma current without the assistance of center solenoid coils have been achieved on TRIAM-1M, especially regarding steady-state operation by realization of a discharge for >3 h.