ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
R. Paul Drake
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 405-415
Technical Paper | First-wall Technology | doi.org/10.13182/FST83-A20864
Articles are hosted by Taylor and Francis Online.
Data from the Tandem Mirror Experiment (TMX) and other recent research show how to control plasma/wall interactions in tandem mirrors (TMs). Based on current knowledge, plasma/wall interactions will not limit the performance of TM reactors—either at the end walls or the radial walls. Magnetic field expansion and gas pumping can be used to regulate the plasma conditions at the end wall. Specifically, in TMX the plasma density at the end wall was found to be ≈2 × 109 em −3, whereas the end-plug density was ≈2 × 1013 cm−3; also, the sheath potential at the wall (8 V) was <10% of the end-plug electron temperature. The "natural divertor" effect-by which positively charged plasmas in magnetic mirror machines exhaust particles and energy to the end wall—can be used to both control the plasma conditions at the radial walls and divert impurities to the end wall. These techniques, the data that support them, and needed areas of further research are discussed.