ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
R. Paul Drake
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 405-415
Technical Paper | First-wall Technology | doi.org/10.13182/FST83-A20864
Articles are hosted by Taylor and Francis Online.
Data from the Tandem Mirror Experiment (TMX) and other recent research show how to control plasma/wall interactions in tandem mirrors (TMs). Based on current knowledge, plasma/wall interactions will not limit the performance of TM reactors—either at the end walls or the radial walls. Magnetic field expansion and gas pumping can be used to regulate the plasma conditions at the end wall. Specifically, in TMX the plasma density at the end wall was found to be ≈2 × 109 em −3, whereas the end-plug density was ≈2 × 1013 cm−3; also, the sheath potential at the wall (8 V) was <10% of the end-plug electron temperature. The "natural divertor" effect-by which positively charged plasmas in magnetic mirror machines exhaust particles and energy to the end wall—can be used to both control the plasma conditions at the radial walls and divert impurities to the end wall. These techniques, the data that support them, and needed areas of further research are discussed.