ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Nicolas H. Packan, Kenneth Farrell
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 392-404
Technical Paper | Material Engineering | doi.org/10.13182/FST83-A20863
Articles are hosted by Taylor and Francis Online.
Microstructural damage is measured in a stable austenitic alloy after nickel-ion bombardment to doses of 1 to 70 dpa at temperatures in the range of 840 to 1100 K. The influence of helium, both preimplanted at room temperature and coimplanted at a rate of 20 at. ppm per dpa, is examined. The helium causes considerable increases in the concentrations of cavities and reductions in cavity size, and shifts the peak swelling temperature upward by ∼50 K; growth of dislocation loops is delayed. Preimplanted helium has much more pronounced effects than coimplanted helium, including the generation of a large secondary population of small cavities deemed to be helium bubbles, and in some cases submicroscopic bubbles. Cavitation is assessed with regard to the concept of a critical size for bias-driven cavity growth. The results of this experiment are attributed to helium-enhanced cavity nucleation and to the influence of such nucleation on the cavity and dislocation sink strengths.