ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
M. Z. Youssef, R. W. Conn
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 361-384
Technical Paper | Blanket Engineering | doi.org/10.13182/FST83-A20861
Articles are hosted by Taylor and Francis Online.
The radioactivity, biological hazard potential, and afterheat levels in the deuterium-deuterium (D-D) fuel cycle fusion reactor, SATYR, have been evaluated for two types of structural materials: ferritic steel (HT-9) and sintered aluminum product. Results are compared to the corresponding levels in the deuterium-tritium (D-T) fuel cycle systems, STAR-FIRE and WITAMIR-I, both during operation and after plant decomissioning. The influence of blanket replacements on the radioactivity levels has been considered in the comparative analysis. It has been found that the long-term radioactivity level (100 to 1000 yr after plant shutdown) in the ferritic steel blanket of the SATYR design is somewhat higher, by a factor of 2 to 6, than that found for a D-T reactor system employing the same structural alloy. The high levels are attributed to the softer spectrum and the larger structure volume fraction encountered in the D-D machines. However, the levels during plant operation (∼30 yr) are comparable. Isotopic tailoring and elemental substitution in alloys to reduce the long-term radioactivity levels in the SATYR design are discussed. It is found that three orders of magnitude reduction in radioactivity levels can be achieved by isotopically tailoring the molybdenum in the ferritic steel to 100% 97Mo. The elemental substitution of vanadium for nickel and molybdenum in ferritic steels is shown to reduce long-term radioactivity levels by four orders of magnitude. These low levels at long times after shutdown are below those found for blankets using aluminum alloy structure. The results make clear that elemental composition should be a primary consideration in alloy formulation if the goal of a low radioactivity level in fusion reactor radwaste is to be achieved.