ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
M. Z. Youssef, R. W. Conn
Fusion Science and Technology | Volume 3 | Number 3 | May 1983 | Pages 361-384
Technical Paper | Blanket Engineering | doi.org/10.13182/FST83-A20861
Articles are hosted by Taylor and Francis Online.
The radioactivity, biological hazard potential, and afterheat levels in the deuterium-deuterium (D-D) fuel cycle fusion reactor, SATYR, have been evaluated for two types of structural materials: ferritic steel (HT-9) and sintered aluminum product. Results are compared to the corresponding levels in the deuterium-tritium (D-T) fuel cycle systems, STAR-FIRE and WITAMIR-I, both during operation and after plant decomissioning. The influence of blanket replacements on the radioactivity levels has been considered in the comparative analysis. It has been found that the long-term radioactivity level (100 to 1000 yr after plant shutdown) in the ferritic steel blanket of the SATYR design is somewhat higher, by a factor of 2 to 6, than that found for a D-T reactor system employing the same structural alloy. The high levels are attributed to the softer spectrum and the larger structure volume fraction encountered in the D-D machines. However, the levels during plant operation (∼30 yr) are comparable. Isotopic tailoring and elemental substitution in alloys to reduce the long-term radioactivity levels in the SATYR design are discussed. It is found that three orders of magnitude reduction in radioactivity levels can be achieved by isotopically tailoring the molybdenum in the ferritic steel to 100% 97Mo. The elemental substitution of vanadium for nickel and molybdenum in ferritic steels is shown to reduce long-term radioactivity levels by four orders of magnitude. These low levels at long times after shutdown are below those found for blankets using aluminum alloy structure. The results make clear that elemental composition should be a primary consideration in alloy formulation if the goal of a low radioactivity level in fusion reactor radwaste is to be achieved.