ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Chan K. Choi, Ming-Yuan Hsiao
Fusion Science and Technology | Volume 3 | Number 2 | March 1983 | Pages 273-279
Technical Paper | Special Section Content | doi.org/10.13182/FST83-A20850
Articles are hosted by Taylor and Francis Online.
Calculations of the energy loss rates from the unified theory are compared with those of other theories (e.g., binary collision theory and the wave theory) to study the accuracy and validity of each theory under various plasma regimes. The unified theory combines the binary collision theory and the collective wave theory, and is more accurate for wide ranges of plasma parameters and for entire interaction ranges (0 ≤ r ≤ ∞). Moreover, the present unified slowing down formalism is not any more complicated than the widely used binary collisional treatment and, consequently, it provides a usable expression in the study of energetic charged fusion product transport in both magnetic and inertial fusion plasmas.