ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Chan K. Choi, Ming-Yuan Hsiao
Fusion Science and Technology | Volume 3 | Number 2 | March 1983 | Pages 273-279
Technical Paper | Special Section Content | doi.org/10.13182/FST83-A20850
Articles are hosted by Taylor and Francis Online.
Calculations of the energy loss rates from the unified theory are compared with those of other theories (e.g., binary collision theory and the wave theory) to study the accuracy and validity of each theory under various plasma regimes. The unified theory combines the binary collision theory and the collective wave theory, and is more accurate for wide ranges of plasma parameters and for entire interaction ranges (0 ≤ r ≤ ∞). Moreover, the present unified slowing down formalism is not any more complicated than the widely used binary collisional treatment and, consequently, it provides a usable expression in the study of energetic charged fusion product transport in both magnetic and inertial fusion plasmas.