ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Masahiro Kinoshita, Yuji Naruse
Fusion Science and Technology | Volume 3 | Number 1 | January 1983 | Pages 112-120
Technical Paper | Tritum System | doi.org/10.13182/FST83-A20821
Articles are hosted by Taylor and Francis Online.
The new multistage-type H2/H2O exchange column using hydrophobic catalysts without the superheating section, which separates the water/vapor scrubbing step and the vapor/hydrogen exchange step, is one of the most attractive processes for hydrogen isotope separation. The present study deals with two exchange columns of this type that seem to be feasible. One is a column processing D2, D2O, HD, HDO, DT, and DTO, which is a unit process for recovery of tritium and removal of protium from the heavy water used as the moderator for nuclear fission reactors. The other is a column processing H2, H2O, HD, HDO, HT, and HTO for a decrease in volume of the tritiated water produced by the operation of tritium facilities. A mathematical simulation procedure is developed for these columns. The rigorous solutions of all the basic equations derived from requirements for conservation of material and phase equilibrium on any stage are effectively found out by means of a successive iteration method. This method uses the tridiagonal matrix algorithm, which is often used in distillation calculations, modifying it to make it applicable to the cases where three phases (liquid water/water vapor/hydrogen gas) must be considered. It is also shown that a specific convergence technique is needed to accelerate the progress of the iterative calculation or to ensure achievement of convergence. Several numerical experiments indicate that this simulation procedure is applicable in a fairly wide range of calculational conditions.