ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
U. K. Roychowdhury, M. Venugopalan, M. L. Pool, Robert Graham
Fusion Science and Technology | Volume 2 | Number 3 | July 1982 | Pages 392-397
Technical Paper | Special Section Contents / Plasma Engineering | doi.org/10.13182/FST82-A20771
Articles are hosted by Taylor and Francis Online.
A quadrupole coil that produces an inwardly convex curvature of the induced electric field lines and low induced magnetic fields in the plasma zone has been constructed. Hydrogen and boron plasmas were produced by the use of such a coil. Faraday cup measurements showed that the maximum proton energy in the loss cone of a magnetic bottle was 630 eV. Two such quadrupole coils were oriented to have nearly zero mutual inductance. Energy was imparted independently by ion cyclotron resonance to two different species in a plasma in a common dc magnetic field. A diborane plasma was produced by simultaneous operation of the two coils and the 2497-Å boron I line identified. The energy was supplied directly to protons and to boron ions. The quadrupole coil appears to be promising as a primary or supplementary heating source for certain fusion devices of the magnetic bottle type.