ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
J. Reece Roth
Fusion Science and Technology | Volume 2 | Number 1 | January 1982 | Pages 29-42
Overview | doi.org/10.13182/FST82-A20732
Articles are hosted by Taylor and Francis Online.
The consequences are assessed of a common set of engineering constraints on the characteristics of fusion reactors that employ deuterium-tritium (D-T), advanced, and exotic fusion fuel cycles. A set of uniform assumptions is made regarding blanket costs, wall loading limits, fusion power density limits, radio-frequency technologies, etc. From these common constraints, the regimes of ion number density, ion kinetic temperature, and plasma stability index β, which lead to attractive fusion reactors, are found. It is demonstrated that if tokamaks are restricted to values of β < 0.05, no fuel cycle other than D-T is compatible with currently accepted engineering constraints. The catalyzed deuterium-deuterium and the D-3He reactions are attractive for values of β > ∼0.20. It is found that the charged particle or “neutron-free” reactions such as ρ-6Li, even if ignitible, are inconsistent with engineering constraints, even at β = 1.0, because of their low reactivity. As expected, the D-T reaction allows the widest range of operating parameters because of its high reactivity. However, it can be used only with difficulty at high values of β because of wall loading limitations. Finally, the limitations imposed by electron cyclotron resonance heating (ECRH) of the plasma are examined. It is found that the cutoff density implied by ECRH (above which radiation is reflected from the plasma) places a serious additional constraint on the accessible operating regime of some advanced fuel fusion reactors.