ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
D. D. Ryutov
Fusion Science and Technology | Volume 41 | Number 2 | March 2002 | Pages 88-91
Technical Paper | doi.org/10.13182/FST02-A204
Articles are hosted by Taylor and Francis Online.
Two problems related to alpha particle physics in magnetized target fusion (MTF) systems are briefly discussed. First, we evaluate the pressure and density of alpha particles under the assumption that they are perfectly confined and have a classical slowing-down distribution. It turns out that because of a comparatively low plasma temperature in MTF systems, the relative pressure and density of alpha particles are more than an order of magnitude less than in fusion reactors based on ITER-type tokamaks. Therefore, one may expect that even in the extreme case of a perfect confinement of alpha particles, their presence will have a much weaker (than in the case of tokamaks) effect on plasma stability and transport. Second, we discuss the kinetics of plasma burn under the opposite extreme assumption that all the alpha particles are instantaneously lost, without leaving any energy in a plasma. It turns out that even in this case, the plasma energy yield in batch-burn systems is only weakly affected by burnout effects.