ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Nermin A. Uckan
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 299-319
Technical Paper | Plasma Engineering | doi.org/10.13182/FST88-A20263
Articles are hosted by Taylor and Francis Online.
A simple global analysis is developed to examine the relative merits of size (L = a or R0), field (B0), and current (I) on ignition regimes of tokamaks under various confinement scaling laws. Scalings of key parameters (nτE, β, Paux, Pfus, etc.) with L, B0, and I are presented at several operating points, including (a) optimal path to ignition (saddle point), (b) ignition at minimum beta, (c) ignition at 10 keV, and (d) maximum performance at the limits of density (nmax ∼ B0/R0) and beta (βcrit ∼ I/aB0). Expressions for the saddle point and the minimum conditions needed for ohmic ignition are derived analytically for any confinement model of the form τE ∼ nxTy. For a wide range of confinement models, the “figure of merit” parameters and I are found to give a good indication of the relative performance of the devices, where q* is the cylindrical safety factor. As an illustration, the results are applied to representative “CITs” (a class of compact, high-field ignition tokamaks) and “Super-JETs” [a class of large-size (few × JET), low-field, high-current (≳20-MA) devices].