ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Nermin A. Uckan
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 299-319
Technical Paper | Plasma Engineering | doi.org/10.13182/FST88-A20263
Articles are hosted by Taylor and Francis Online.
A simple global analysis is developed to examine the relative merits of size (L = a or R0), field (B0), and current (I) on ignition regimes of tokamaks under various confinement scaling laws. Scalings of key parameters (nτE, β, Paux, Pfus, etc.) with L, B0, and I are presented at several operating points, including (a) optimal path to ignition (saddle point), (b) ignition at minimum beta, (c) ignition at 10 keV, and (d) maximum performance at the limits of density (nmax ∼ B0/R0) and beta (βcrit ∼ I/aB0). Expressions for the saddle point and the minimum conditions needed for ohmic ignition are derived analytically for any confinement model of the form τE ∼ nxTy. For a wide range of confinement models, the “figure of merit” parameters and I are found to give a good indication of the relative performance of the devices, where q* is the cylindrical safety factor. As an illustration, the results are applied to representative “CITs” (a class of compact, high-field ignition tokamaks) and “Super-JETs” [a class of large-size (few × JET), low-field, high-current (≳20-MA) devices].