ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Kiyoshi Yoshikawa, Shinji Kouda, Yasushi Yamamoto, Kouichi Maeda
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 264-283
Technical Paper | Energy Conversion | doi.org/10.13182/FST88-A20260
Articles are hosted by Taylor and Francis Online.
A two-dimensional code for an axisymmetrical plasma direct energy converter (PDC), the Kyoto University Numerical Analysis for Ion Trajectories in Axisymmetrical System (KUNAITAS), has been developed with the aid of the two-dimensional code Kyoto University Advanced DART (KUAD), including evaluation of atomic processes. The two-dimensional code was applied successfully to a PDC design for the Fusion Engineering Facility based on mirror confinement, with space-charge effects taken into account, yielding ∼60% recovery efficiency at pressures of 10−4 Pa. Calculations are made for particle trajectories of incident ions, slow ions and electrons, and secondary electrons in the presence of expanding magnetic fields and self-consistent electric fields with particle trajectories.