ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
M. A. Prelas, G. H. Miley
Fusion Science and Technology | Volume 1 | Number 3 | July 1981 | Pages 402-413
Technical Paper | Advanced Laser | doi.org/10.13182/FST81-A19940
Articles are hosted by Taylor and Francis Online.
The first successful modeling of an impurity-type nuclear pumped laser (NPL) (i.e., one that employs trace densities of the lasing species in a noble gas buffer), atomic carbon at 1.45 μm, was achieved. Such NPLs are important due to their low flux threshold and quasi-steady-state oscillation. The atomic carbon NPL is unique in that time delays up to 5 ms are observed between the laser signal and the excitation pulse in helium + CO2 mixtures while no delay is observed in helium + CO. Using a kinetic model in conjunction with an experimental program, we show that this difference in delay arises from slow dissociation of CO2 to form CO. Significantly, the model also successfully simulates electrical pumping of He-CO or CO2 mixtures.