ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Robert R. Peterson, Gregory A. Moses, Gary W. Cooper
Fusion Science and Technology | Volume 1 | Number 3 | July 1981 | Pages 377-389
Technical Paper | ICF | doi.org/10.13182/FST81-A19938
Articles are hosted by Taylor and Francis Online.
The criteria governing the choice of cavity gas for light-ion-beam fusion reactors have been investigated. Possible mechanisms of laser initiation of plasma discharge channels and the effects of cavity gas choice on one of the most promising mechanisms are discussed. The shock overpressure and the thermal heat flux experienced by the first wall are studied for a variety of cavity gases. Small amounts of alkali metal vapors are found to be useful in both limiting the thermal heat flux and initiating the plasma channels. A 50-Torr argon cavity gas with a 0.2% sodium impurity has been found to allow both efficient laser channel initiation and first-wall survivability.