ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
John P. Holdren
Fusion Science and Technology | Volume 1 | Number 1 | January 1981 | Pages 79-89
Technical Paper | Fusion | doi.org/10.13182/FST81-A19917
Articles are hosted by Taylor and Francis Online.
Release of neutron-activation products in severe hypothetical fusion-reactor accidents may constitute a larger health hazard than that of the tritium released at the same time. Significant escape of activation products could result from lithium fires hot enough to melt and partly vaporize activated first-wall materials, or from other accident sequences that bring air into contact with activated structure hot enough to cause the formation of volatile metal oxides. Analysis of three combinations of structural materials and severe accident scenarios has been undertaken for an early conceptual tokamak reactor, using a simple consequence model based on that of the Nuclear Regulatory Commission's Reactor Safety Study (the Rasmussen report) to determine conceivable radiation doses near the plant boundary. (No attempt was made to estimate probabilities for such severe events.) In the cases of stainless-steel and molybdenum structures subject to massive lithium fires, the boundary doses far exceed those that would be produced by release of the entire plant inventory of tritium and are comparable to the doses similarly calculated for “worst case” light water reactor accidents. The case of niobium fusion-reactor structure is more favorable. These results, based on an early fusion-reactor design not optimized with respect to safety characteristics, may well portray a worst case picture of fusion accident consequences. They suggest, however, that the large potential safety advantages of fusion compared to fission are not necessarily inherent for all designs and choices of materials, and they motivate attention to the several available strategies for greatly reducing the potential for activation-product release from fusion reactors.