ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Ji-Feng Wang, Tsuneo Amano, Yuichi Ogawa, Nobuyuki Inoue
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 590-600
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST97-A19906
Articles are hosted by Taylor and Francis Online.
The dynamics of burning plasma for various transient situations in International Thermonuclear Experimental Reactor (ITER) plasma have been simulated with the 1½-dimensional up-down asymmetry Tokamak Transport Simulation code. Attention is paid primarily to intrinsic plasma transport processes such as confinement improvement and changes of plasma profiles. A large excursion of fusion power is shown to take place with a small improvement of plasma confinement; e.g., an increase of the global energy confinement by a factor of 1.2 yields a fusion power excursion of ∼30% within a few seconds. Given this short timescale of the fusion power transient, any feedback control of fueling deuterium-tritium gas is difficult. The effect of plasma profile on fusion power excursion is studied by changing the particle transport denoted by the peaking parameter Cv. When the fusion power excursion is mild and slow, the feedback control is quite effective in suppressing the fusion power excursion and in shortening the duration time of the power transient. Changes of the pumping efficacy are also studied, and large excursions of fusion power are not observed because of a decrease of the fuel density itself when the pumping efficacy is increased; and helium ash accumulates in the case of a decrease of the pumping efficacy. Finally, magnetohydrodynamic sawtooth activity leads to a fusion power fluctuation of ±20%, although such activity is helpful for helium ash exhaust.