ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Mitsushi Abe,* Akira Doi, Kazuhiro Takeuchi, Michio Otsuka, Shigeyoshi Kinoshita, Satoshi Nishio, Masayoshi Sugihara, Ryuji Yoshino
Fusion Science and Technology | Volume 32 | Number 4 | December 1997 | Pages 545-560
Technical Paper | Special Section: Plasma Control Issues for Tokamaks / Plasma Engineering | doi.org/10.13182/FST97-A19904
Articles are hosted by Taylor and Francis Online.
Tokamak startup characteristics with a low-loop-resistance vacuum vessel were studied in the HT-2, which is a tokamak with a major radius of 41 cm, a minor radius of 11 cm, and a plasma current of IP < 55 kA. Precise poloidal magnetic field control is possible using independently and multivariably controlled poloidal field coils. The vacuum vessel loop resistance Ωv was originally high (14 mΩ), but it was modified to be able to operate with a low value (0.3 mΩ). The latter is approximately one-tenth of the plasma resistance (2.2 mΩ) at breakdown (Te = 10 eV). With Ωv = 0.3 mΩ, the magnetic field induced by the eddy current is large, and it disturbs the breakdown. However, careful compensation of the poloidal field makes a well-controlled ohmic startup possible. Other results are as follows: very little difference in the consumed ohmically heated flux was observed between discharges with low and high loop resistances; well-controlled startup was obtained with a very low loop voltage of 2.5 V, which corresponded to the 1 V/m electric field; the breakdown condition is well described by the electron avalanche model. It is concluded that low Ωv is applicable to a tokamak design, as long as the poloidal magnetic field is well controlled even during the breakdown phase.