ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
New York takes two more steps toward nuclear
In 2025, New York Gov. Kathy Hochul was a vocal supporter of new nuclear development in the state. In October, she called on the New York Power Authority (NYPA)—the state’s public electric utility—to add 1 GW of new nuclear.
At the tail end of December, New York made more nuclear progress on three fronts. Hochul signed an agreement with Ontario Premier Doug Ford to collaborate on new nuclear development, Ontario Power Generation (OPG) signed a memorandum of understanding with the NYPA, and New York finalized its 2025 energy plan.
George Tsotridis
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 35-44
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19878
Articles are hosted by Taylor and Francis Online.
Plasma-facing components in tokamak-type fusion reactors are subjected to intense heat loads during plasma disruptions, which causes melting and evaporation of the surface layer. The influence of the beam cross section of the incident energy on the depths of heat-affected zones on pure tungsten metal has been studied by using a two-dimensional transient computer model that solves the equations of motion and energy. Results are presented for relatively long disruption times for different beam cross sections and for a range of energy densities. It is demonstrated that there exists a critical value of cross-section area beyond which any further increase has no appreciable influence on the resulting depths of molten layers. It is also demonstrated that as the cross section increases, the convective flows caused by surface tension gradients resulting from variations of surface impurities are confined at regions close to the periphery of the molten zone, whereas at the center of the molten pool, heat is transported in the molten metal by conduction. It is demonstrated that by increasing the beam cross-section area, the resulting depths of molten layers increase. However, there exists a critical value of cross section beyond which the resulting molten layer depths are invariant to the beam cross section. It is further appreciated that there are other important phenomena taking part during plasma disruptions, such as electromagnetic forces, but at this stage, such influences on the molten layers will not be studied. Nevertheless, the influence of the beam cross-sectional area would be of similar importance.