ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
Oleg I. Buzhinskij, Yuri M. Semenets
Fusion Science and Technology | Volume 32 | Number 1 | August 1997 | Pages 1-13
Technical Paper | First-Wall Technology | doi.org/10.13182/FST97-A19875
Articles are hosted by Taylor and Francis Online.
A review of some characteristic features of the boronization process, properties of boron-carbon films, and the influence of these features on tokamak discharges is presented. Boronization, as defined here, is a plasma chemical vapor deposition of a thin a-B/C:H film on the first wall of fusion reactors. As a result of boronization, oxygen, carbon, and heavy impurities (e.g., iron, nickel, and chromium) are suppressed, and hydrogen recycling is reduced, which substantially improves the characteristics of tokamak discharges. A two-stage complex protection of both the first wall by boronization and of limiters, divertor plates, and radio-frequency antennas by the application of thick B4C coatings provides further improvement of tokamak plasma parameters.