ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
U. Fischer, D. Leichtle, A. Serikov, P. Pereslavtsev, R. Villari
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 563-570
Nuclear Systems: Analysis and Experiments | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19153
Articles are hosted by Taylor and Francis Online.
Several methodologies have been developed for the calculation of shut-down dose rates based on the use of the Monte Carlo (MC) technique for particle transport simulations including the rigorous two-step (R2S) approach and its recent R2Smesh extension, the direct one-step (D1S) method which employs one single MC transport simulation both for neutrons and decay gammas, and a rough rule of thumb (RoT) approximation based on neutron flux-to-dose conversion factors. The paper discusses these approaches and their applications to ITER with focus on dose rate estimations for the equatorial Test Blanket and Diagnostic Ports. These applications are complemented by benchmark analyses on shut-down dose rate measurements performed on JET showing the validity of the R2S and D1S approaches.