ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Fumito Okino, Kazuyuki Noborio, Ryuta Kasada, Satoshi Konishi
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 549-551
Fusion Technologies: Heating and Fueling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19151
Articles are hosted by Taylor and Francis Online.
The feasibility of deuterium mass transport prediction from falling droplets of Pb-17Li was verified. This prediction is one of key techniques of the engineering design of tritium extraction device for the fusion reactor. The mass-transfer-coefficient, deduced on the surface-stretch-model was applied. As the experimental results, deuterium mass transport in the falling droplets from four different size nozzles, at four temperature conditions between 375 °C and 450 °C, performed by the authors, were compared. Resultant Sherwood number was between 494 and 598, and explained the experimental result of the two orders of magnitudes differences with the reported diffusion in static condition. Though, the ratio of theory and experiment still remained between 1.8 and 2.3. Simple boundary condition, not considering the number of oscillation, wide range of reported diffusivity value are considered to be main reasons of the deviation. The analysis model including these factors is to improve prediction accuracy. This result is expected to contribute to a preliminary design of a tritium extraction device.