ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Sellafield waste vault yields 1960s-era finds
A 1960s Electrolux vacuum cleaner was among the more unusual items workers removed from one of the world’s oldest nuclear waste stores at the United Kingdom’s Sellafield nuclear site.
B. G. Hong
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 488-492
DEMO and Next-Step Facilities | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19140
Articles are hosted by Taylor and Francis Online.
The concept of a fusion-driven transmutation reactor based on Low Aspect Ratio (LAR) tokamak as a neutron source is studied based on ITER physics and technology. The radial build of transmutation reactor components are self-consistently determined by coupling the systems analysis with radiation transport analysis and an optimal configuration of a transmutation reactor for aspect ratio, A in the range of 1.5 to 2.0 is found. The performance of a transmutation reactor is investigated and shows that a transmutation reactor with a neutron source producing fusion power less than 150 MW can destroy the transuranic actinides contained in the spent fuels produced from more than two 1 GWe PWRs with production of the fission power being greater than 2 GW.