ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B. G. Hong
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 488-492
DEMO and Next-Step Facilities | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19140
Articles are hosted by Taylor and Francis Online.
The concept of a fusion-driven transmutation reactor based on Low Aspect Ratio (LAR) tokamak as a neutron source is studied based on ITER physics and technology. The radial build of transmutation reactor components are self-consistently determined by coupling the systems analysis with radiation transport analysis and an optimal configuration of a transmutation reactor for aspect ratio, A in the range of 1.5 to 2.0 is found. The performance of a transmutation reactor is investigated and shows that a transmutation reactor with a neutron source producing fusion power less than 150 MW can destroy the transuranic actinides contained in the spent fuels produced from more than two 1 GWe PWRs with production of the fission power being greater than 2 GW.