ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Beyond Nuclear brings interim storage case back to Supreme Court
The U.S. Supreme Court may once again scrutinize the Nuclear Regulatory Commission’s authority to license consolidated interim storage facilities for commercial spent nuclear fuel. The antinuclear group Beyond Nuclear has filed a petition with the court for a writ of certiorari review of an August 2024 appeals court decision rejecting the group’s lawsuit against the licensing of Holtec International’s New Mexico storage facility, the HI-STORE CISF.
I. P. Serrano, J. I. Linares, A. Cantizano, B. Y. Moratilla
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 483-487
DEMO and Next-Step Facilities | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A19139
Articles are hosted by Taylor and Francis Online.
A domestic research program called TECNO_FUS was launched in Spain in 2009 to support technological developments related to a dual-coolant (He/Pb-Li) breeding blanket design concept. One of the goals of the project was the analysis of a suitable power conversion system with an enhanced coupling with the reactor heat sources. Each source has a different thermal level which generates many problems in the coupling.In previous works the authors have explored enhanced power cycles, taken from literature, which solve the differences in the thermal levels of the sources with combined or dual cycles. Although these cycles reach high efficiencies (between 45% and 47%) their layout is very complex and the use of steam is required.In this paper a new power conversion cycle is proposed. It avoids the use of complex layouts, being a variant of the supercritical CO2 Brayton cycle matched to the available thermal sources through an extra recuperator. The basic supercritical CO2 Brayton cycle has been also analyzed for comparison. The new cycle has been optimized so that efficiencies above 47% have been achieved.