ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
C. E. Kessel, M. S. Tillack, J. P. Blanchard
Fusion Science and Technology | Volume 64 | Number 3 | September 2013 | Pages 440-448
ARIES | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-538
Articles are hosted by Taylor and Francis Online.
The heat loading on plasma facing components (PFCs) provides a critical limitation for design and operation of the first wall, divertor, and other special components. Power plants will have high power entering the scrape-off layer and transporting to the first wall and divertor. Although the engineering design for steady heat loads is understood, characterizing the steady heat load and the approach for transient and off-normal loading is not. The characterization of heat loads developed for ITER can be applied to power plants to better develop the operating space of viable solutions and point to research focus areas.