ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
K. E. Miller, J. A. Grossnickle, R. D. Brooks, C. L. Deards, T. E. DeHart, M. Dellinger, M. B. Fishburn, H. Y. Guo, B. Hansen, J. W. Hayward, A. L. Hoffman, W. S. Kimball, K. Y. Lee, D. E. Lotz, P. A. Melnik, R. D. Milroy, Z. A. Pietrzyk, G. C. Vlasses, F. S. Ohuchi, A. Tankut
Fusion Science and Technology | Volume 54 | Number 4 | November 2008 | Pages 946-961
Technical Paper | doi.org/10.13182/FST08-A1910
Articles are hosted by Taylor and Francis Online.
The original Translation, Confinement, Sustainment (TCS) experiment was upgraded [TCS Upgrade (TCSU)] to provide an ultrahigh vacuum (UHV) environment with modern discharge cleaning and wall-coating technologies. This has allowed rotating magnetic field formed field reversed configuration plasma temperatures to increase from the TCS radiation-dominated tens of electron volts to >200 eV (Te + Ti), and FRC magnetic fields to double. The improvements are directly attributable to reduced impurity levels and reduced plasma recycling losses. Some of the technologies utilized to achieve these results included replacing O-rings with wire and conflat seals; developing high-temperature, differentially pumped, elastomeric seals for bonding extremely large quartz tubes (needed for rapid field penetration) to the stainless steel vacuum chambers; and using heater blankets for vacuum baking. Extensive testing using electron microprobe and various spectroscopic techniques was performed to establish appropriate UHV cleaning and handling methods.