ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Sellafield awards $6B ‘high hazard risk reduction’ framework contract
Sellafield Ltd., the site license company overseeing the decommissioning of the United Kingdom’s Sellafield nuclear site in Cumbria, England, has awarded a 15-year framework contract worth up to £4.6 billion ($6 billion) to support “high hazard risk reduction programs” at the site.
Mark L. Bibeault, Stephen N. Paglieri, Dale G. Tuggle, Joseph R. Wermer, Arthur Nobile, Jr.
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 623-626
Technical Paper | Process Applications | doi.org/10.13182/FST08-A1892
Articles are hosted by Taylor and Francis Online.
A system containing a combination of getters (Zr-Mn-Fe, SAES St909; and Zr2Fe, SAES St198) was used to process the nitrogen-hydrogen-helium atmosphere in a glovebox used for handling metal tritide samples. During routine operations, the glovebox atmosphere is recirculated and hydrogenous impurities (i.e. CQ4, Q2O, and NQ3, where Q [is equivalent to] H, D, T) are decomposed (cracked) and removed by Zr-Mn-Fe without absorbing elemental hydrogen isotopes. If the tritium content of the glovebox atmosphere becomes unacceptably high, the getter system can rapidly strip the glovebox atmosphere of all hydrogen isotopes by absorption on the Zr2Fe, thus lessening the burden on the facility waste gas treatment system. The getter system was designed for high flowrate (> 100 l/min), which is achieved by using a honeycomb support for the getter pellets and 1.27-cm diameter tubing throughout the system for reduced pressure drop. The novel getter bed design also includes an integral preheater and copper liner to accommodate swelling of the getter pellets, which occurs during loading with oxygen and carbon impurities. Non-tritium functional tests were conducted to determine the gettering efficiencies at different getter bed temperatures and flowrates by recirculating gas through the system from a 6-m3 glovebox containing known concentrations of impurities.