ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Elliot A. Clark, Gregory C. Staack
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 576-579
Technical Paper | Materials Interactions | doi.org/10.13182/FST08-A1881
Articles are hosted by Taylor and Francis Online.
Samples of ethylene propylene diene monomer (EPDM) elastomer were exposed to tritium gas in closed containers at 101 kPa (1 atmosphere) pressure and ambient temperature for about one week. Tritium exposure effects on the samples were characterized by dynamic mechanical analysis (DMA) and radiolysis products were characterized by measuring the total final pressure and composition in the exposure containers at the end of exposure period. There was no effect of one week tritium exposure on the glass transition temperature, Tg, of the samples tested. Impurity gases produced in the closed containers included HT and lesser amounts of H2, DTO, and CT4. The total pressure remained the same during exposure.