ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Hanford completes 20 containers of immobilized waste
The Department of Energy has announced that the Hanford Site’s Waste Treatment and Immobilization Plant (WTP) has reached a commissioning milestone, producing more than 20 stainless steel containers of immobilized low-activity radioactive waste.
Yasunori Iwai, Toshihiko Yamanishi, Akihiro Hiroki, Toshiaki Yagi, Masao Tamada
Fusion Science and Technology | Volume 54 | Number 2 | August 2008 | Pages 458-461
Technical Paper | Water Processing | doi.org/10.13182/FST08-A1853
Articles are hosted by Taylor and Francis Online.
A solid-polymer-electrolyte (SPE) water electrolyzer for high-level tritiated water was designed for the Water Detritiation System (WDS). Polymeric materials were selected from a main viewpoint of radiation durability to keep their functions beyond ITER-WDS requirement (530kGy). Our selection was Pt + Ir applied Nafion® N117 ion exchange membrane, VITON® O-ring seal and polyimide insulator. A -ray irradiation test of the SPE cell demonstrated the durability of the cell against 530kGy. The electrolyzer is designed to handle around 9TBq/kg of high-level tritiated water. The detritiation of the polymeric materials is thus a critical problem for the maintenance or for the disposal of the electrolyzer. As for the Nafion membrane, most of tritiated water in the membrane was rapidly removed by such as vacuum dehydration. It was difficult, by contrast, to remove bound tritiated water in the membrane. An effective method to remove tritiated water in the bound water is to promote an isotope exchange.