ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Yu. Igitkhanov, B. Bazylev, I. Landman
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 245-249
Plasma-Material Interactions | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18084
Articles are hosted by Taylor and Francis Online.
In the steady-state operation the life-time performance of functional and structural materials in fusion reactor DEMO will be limited by several processes such as a sputtering erosion, transient events and neutron irradiation. The design strategy is to determine the structure and coating thicknesses which maximize component lifetime against all lifetime limitations. The sputtering erosion of the first wall tungsten armor layer due to the plasma impact during the steady state DEMO operation is considered here. It is shown that for DEMO conditions the total sputtering erosion of W armor by the charge-exchange DT neutrals could at least reach~1mm during one year of steady-state operation.