ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
K. Nam et al.
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 131-135
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18067
Articles are hosted by Taylor and Francis Online.
This paper describes the fabrication of removable panel for ITER cryostat thermal shield (CTS) and its conduction cooling test at cryogenic temperature. Two kinds of full-scale mock-ups of the removable panels have been developed, depending on different thermal conduction designs. Passive cooling characteristics of the mock-ups are investigated with the measured data of temperature jump at the joint and maximum temperature at the panel. The passive cooling of panel with copper insertion satisfies the design requirement of temperature jump (< 3 K), even though the heat load condition in the cooling test is more severe than the design condition of CTS. It is clearly demonstrated that the copper strips bonded on the panel attenuate the temperature gradient of the panel. Different thermal behaviors at the joint are also found for the two mock-ups.