ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Alain Godot, Célia Lepeytre, Jean-Charles Hubinois, Aurélien Arseguel, Jean-Pierre Daclin, Christophe Douche
Fusion Science and Technology | Volume 54 | Number 1 | July 2008 | Pages 231-234
Technical Paper | Waste Handling | doi.org/10.13182/FST08-A1802
Articles are hosted by Taylor and Francis Online.
This method enables an indirect, non intrusive and non destructive measurement of the Tritium activity in wastes drums. The amount of tritium enclosed inside a wastes drum can be determined by the measurement of the leak rate of 3He of this latter.The simulation predicts that a few months are necessary for establishing the equilibrium between the 3He production inside the drum and the 3He drum leak.In practice, after one year of storage, sampling 3He outside the drum can be realized by the mean of a confining chamber that collect the 3He outflow.The apparatus, the experimental procedure and the calculation of tritium activity from mass spectrometric 3He measurements are detailed. The industrial device based on a confinement cell and the automated process to measure the 3He amount at the initial time and after the confinement time is described.Firstly, reference drums containing a certified tritium activity (HTO) in addition to organic materials have been measured to qualify the method and to evaluate its performances.Secondly, tritium activity of organic wastes drums issued from the storage building in Valduc have been determined.Results of the qualification and optimised values of the experimental parameters are reported in order to determine the performances of this industrial device.As a conclusion, the apparatus enables the measurement of an activity as low as 1 GBq of tritium in a 200 liters drum containing organic wastes.