ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. J. Buttery, T. C. Hender
Fusion Science and Technology | Volume 53 | Number 4 | May 2008 | Pages 1080-1102
Technical Paper | Special Issue on Joint European Torus (jet) | doi.org/10.13182/FST08-A1748
Articles are hosted by Taylor and Francis Online.
JET has made a strong contribution to the understanding of stability issues for the tokamak. An overview of its main achievements is presented, with emphasis on the latest progress in resolving the key issues for ITER. In particular, we conclude that control or avoidance strategies for neoclassical tearing modes (NTMs) will be necessary for good performance in ITER. JET studies have provided insights into the transport effects, seeding, underlying physics, and threshold scaling of NTMs. A range of mechanisms are found that can trigger performance-impacting NTMs with various mode numbers. Experiments have highlighted the key role of the sawtooth in triggering the NTM and have developed sawtooth control. The underlying physics suggests increased likelihood of NTM triggering as ITER scales are approached. Extensions have also been made in understanding of error field locked modes and resistive wall modes (RWMs). The predictions for ITER of error field locked mode thresholds have been developed and refined taking account of JET data. Direct inference from experimental studies and benchmarking of magnetohydrodynamic codes have both contributed to improved understanding of RWM stability in ITER. From these developments, and from the parameter space it accesses, JET continues to provide an essential role, and unique operating points, to further test and resolve the stability issues of tokamak physics.