ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
John Sheffield, Mohamed Sawan
Fusion Science and Technology | Volume 53 | Number 3 | April 2008 | Pages 780-788
Technical Paper | doi.org/10.13182/FST53-780
Articles are hosted by Taylor and Francis Online.
Catalyzed D-D is the ultimate fusion cycle, because deuterium is essentially unlimited on earth. In this approach, the 3He and tritium fusion products are recycled to increase the charged particle fusion power. A difficulty with this fusion cycle is that the tritium from fusion, if left in the plasma, produces 14-MeV neutrons, leading to radiation damage comparable to that of the D-T cycle. This paper shows that the damage problems may be alleviated by removing tritium before it can burn. Fortunately, the charged particle fusion power from burning the tritium is small compared to that from the 3He and removing it from the plasma makes little difference to the plasma power balance. Ion cyclotron power might be used to pump out tritium. In this paper, we review the benefits of tritium removal, identify the issues associated with this approach, and determine illustrative parameters required for an advanced tokamak and an advanced stellarator.