ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Kunihito Yamauchi, Kazuki Ogasawara, Masato Watanabe, Akitoshi Okino, Yoshitaka Sunaga, Eiki Hotta
Fusion Science and Technology | Volume 39 | Number 3 | May 2001 | Pages 1182-1187
Technical Paper | doi.org/10.13182/FST01-A171
Articles are hosted by Taylor and Francis Online.
Experimental results of spherical glow discharge for a portable neutron source are presented. An experimental device consisting of a 45-cm-diam, 31-cm-high stainless steel cylindrical chamber was constructed in which a spherical mesh-type 30-cm-diam anode was installed. A spherical grid cathode made of 1.2-mm-diam stainless steel wire was made into a 7-cm-diam open spherical grid. The system was maintained at a constant pressure of 1 to 15 mTorr by feeding hydrogen or deuterium gas. The visible and ultraviolet emissions from the device were measured using the spectroscopic method. Strong emission lines of hydrogen were observed, and all hydrogen lines were broadened, remarkably, by Doppler and/or Stark effects. From these data, beam ion velocity, electron density and temperature of the core plasma were estimated. Using deuterium gas, a steady-state neutron production rate of 104 s-1 was observed at a discharge of 40 kV, 2 mA. In the low-current region of several milliamperes, the neutron production rate was proportional to the discharge current to the power from ~1.1 to 1.4. The beam-background reactions were dominant in the measured range of voltage and current.