ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
S. Sasanka Kumar, M. K. Jayaraj, Ajai Kumar, Ravi A. V. Kumar
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 54-62
Technical Paper | doi.org/10.13182/FST13-A17047
Articles are hosted by Taylor and Francis Online.
Elemental compositional analysis was carried out on various portions (edges to center) of the film on the ADITYA tokamak window using X-ray diffraction, energy-dispersive X-ray analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. Optical transmission studies were carried out at various points along the length and breadth of the film. An automated tabletop setup was developed for cleaning the coating by back-side etching using an Nd:yttrium aluminum garnet laser operated at its second and third harmonics. Various experimental parameters were optimized so as to restore maximum transmission for the window. It was observed that a wavelength of 355 nm at an energy density of 1275 mJ/cm2 and at a repetition rate of 10 Hz was found to be best suited for this application. It was possible to restore the transmission of the coated portion to the transmission level of bare window portions using this setup.