ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
S. Sasanka Kumar, M. K. Jayaraj, Ajai Kumar, Ravi A. V. Kumar
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 54-62
Technical Paper | doi.org/10.13182/FST13-A17047
Articles are hosted by Taylor and Francis Online.
Elemental compositional analysis was carried out on various portions (edges to center) of the film on the ADITYA tokamak window using X-ray diffraction, energy-dispersive X-ray analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. Optical transmission studies were carried out at various points along the length and breadth of the film. An automated tabletop setup was developed for cleaning the coating by back-side etching using an Nd:yttrium aluminum garnet laser operated at its second and third harmonics. Various experimental parameters were optimized so as to restore maximum transmission for the window. It was observed that a wavelength of 355 nm at an energy density of 1275 mJ/cm2 and at a repetition rate of 10 Hz was found to be best suited for this application. It was possible to restore the transmission of the coated portion to the transmission level of bare window portions using this setup.