ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
Hans U. Borgstedt, Jürgen Konys
Fusion Science and Technology | Volume 33 | Number 1 | January 1998 | Pages 68-73
Technical Paper | doi.org/10.13182/FST98-A17
Articles are hosted by Taylor and Francis Online.
Reactions between the vanadium-base alloy V-1 Si-3 Ti and lithium were studied at 550°C in a forced convection loop made of stabilized austenitic stainless steel. Preheating the lithium in contact with a titanium sponge reduced the nitrogen and carbon levels below 100 wppm. In spite of the low concentrations of nonmetallic elements, the vanadium alloy picked up these contaminants, producing a hardened surface layer. Nitrogen concentrations in the range of 10 to 70 wppm significantly influenced the dissolution rate of the solid alloy. Carbon uptake did not reach these levels. Surfaces of the alloy remained unprotected at the lowest nitrogen levels in the lithium. At higher contents, a protecting compound was detected at the surface of the alloy, reducing the dissolution rate during the corrosion test. Dissolution of vanadium and the minor alloying elements became evident when nitrogen concentration was increased further. Material losses from V-1 Si-3 Ti was only one-tenth of that seen from either austenitic or ferritic stainless steels at the same temperature and flow velocity.