ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
H. J. de Blank
Fusion Science and Technology | Volume 53 | Number 2 | February 2008 | Pages 115-121
Technical Paper | Equilibrium and Instabilities | doi.org/10.13182/FST08-A1697
Articles are hosted by Taylor and Francis Online.
This lecture treats the magnetohydrodynamic (MHD) equilibrium of axisymmetric plasmas, as given by the Grad-Shafranov equation. In a brief introduction, equilibrium parameters such as the q-profile, the internal inductance, and the poloidal beta are introduced. The properties of these quantities will be illustrated in the case of the tokamak, by applying the large aspect ratio tokamak approximation. The properties of a non-circular plasma cross-section and the role of the vertical field will also be discussed in this approximation. Some attention is given to the (numerical) problem of solving the equilibrium equation and of reconstructing a plasma equilibrium from external measurements.