ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Kazuaki Miyamoto, Kazunori Takahashi
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 401-403
doi.org/10.13182/FST13-A16968
Articles are hosted by Taylor and Francis Online.
Two-dimensional periodic plasma structure of a density above 1×1010 cm-3 is produced by a 400 kHz capacitively-coupled discharge, where the discharge is operated at ~10 Pascal argon. A living electrode, which is covered with a periodically hollowed insulator, is powered from a 400 kHz power supply through an impedance matching circuit. The net power is increased up to 450 W in the present experiments. The Langmuir probe diagnosis shows the formation of the spatially periodic modulation of the plasma density, where the densities at the peak and trough in the structure are 1.8×1010 cm-3 and 1×1010 cm-3 for 180 W rf power. The density ratio at the peak and trough positions in the structure is unchanged by the rf power.