ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Kazunori Takahashi, Daiki Sato
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 395-397
doi.org/10.13182/FST13-A16966
Articles are hosted by Taylor and Francis Online.
High density helicon plasma is produced by a 13.56 MHz rf discharge under an IGBT-pulsed expanding and strong magnetic field, where the compact solenoid (inner diameter of 10 cm and 616 turn) is used for the formation of the magnetic field. The solenoid current is pulsed by the IGBT device with a pulse width of 20-40 msec. The solenoid current and the resultant magnetic field strength are proportional to the charging voltage to the capacitor. In the presently used solenoid and circuit, the maximum current and the resultant field strength are about 56 A and 3 kGauss, respectively. For the rf power of about 700 W, the high density plasma of about 4 × 1012 cm-3 is achieved. Above the field strength of about 1.6 kGauss, the source plasma density is constant, while the downstream density increases due to the suppression of the radial loss of the plasma particles.