ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
D. Akashi, Y. Takeshita, S. Nakamoto, H. Takeno, Y. Yasaka, Y. Furuyama, A. Taniike
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 301-303
doi.org/10.13182/FST13-A16935
Articles are hosted by Taylor and Francis Online.
The new energy recovery method using secondary electron emission has been studied in order to improve energy recovery from high energy protons of fusion products in D-3He nuclear fusion generation. The model experiments were performed by using the tandem electrostatic accelerator and the basic characteristics were investigated. According to our results, for penetration aluminum is better as a target material than copper, H+ is better than He2+, and higher energy beam is better which agree with numerical calculations. A qualitative characteristic of secondary electron emission dependence on beam energy was also obtained.