ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
H. T. Lee, Y. Ohtsuka, Y. Ueda, K. Sugiyama, E. Markina, N. Yoshida
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 233-236
doi.org/10.13182/FST13-A16913
Articles are hosted by Taylor and Francis Online.
The structure and concentration distribution of He, H, and D in the ion implanted zone following simultaneous He-D irradiation in W was characterized. A shift in He bubble size from nanometer to tens of nanometers was observed between 800 K < T < 1000 K. The bubble field was found to extend to depths of 30-40 nm with mean concentrations of 4-5 at.%.. An order of magnitude increase in He trapping was observed at 800 K when the ion energy was increased from 0.3 to 1.0 keV. Depth profiles of the trapped D at 500 K indicatea marked decrease in the trapped amount coinciding with the He bubble layer. Conversely, enrichment in hydrogen concentration was observed. One hydrogen atom was found to trap in ratio with ~6 He atoms. Such preferential trapping of hydrogen appears to be an important process in the reduction of D diffusion into W due to He effects.