ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. Sakamoto et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 188-192
doi.org/10.13182/FST13-A16902
Articles are hosted by Taylor and Francis Online.
The divertor simulation experimental module (Dmodule) has been installed in the west end region in GAMMA 10/PDX. By use of Langmuir probes and spectroscopic measurement of intensity ratios of He I lines, temporal evolution of electron temperature and that of electron density of the plasma in the D-module with the V-shaped tungsten target are obtained. When the additional ICRF heating is applied to the anchor cell, the electron temperature evaluated with He I intensity ratios decreases from ~60 eV to ~25 eV and that from the probe measurement decreases from ~27 eV to ~14 eV. The difference between both measurements seems to be attributed to the difference of their measurement positions. The electron density measured by the Langmuir probe increases 2.3 times due to the RF3 power but it is rather low (< 1017 m-3). The electron density at the end region is expected to be increased by enhancement of ICRF heating and additional gas puffing at the plug/barrier cell which is the upstream cell of the end region.