ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
M. Sakamoto et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 188-192
doi.org/10.13182/FST13-A16902
Articles are hosted by Taylor and Francis Online.
The divertor simulation experimental module (Dmodule) has been installed in the west end region in GAMMA 10/PDX. By use of Langmuir probes and spectroscopic measurement of intensity ratios of He I lines, temporal evolution of electron temperature and that of electron density of the plasma in the D-module with the V-shaped tungsten target are obtained. When the additional ICRF heating is applied to the anchor cell, the electron temperature evaluated with He I intensity ratios decreases from ~60 eV to ~25 eV and that from the probe measurement decreases from ~27 eV to ~14 eV. The difference between both measurements seems to be attributed to the difference of their measurement positions. The electron density measured by the Langmuir probe increases 2.3 times due to the RF3 power but it is rather low (< 1017 m-3). The electron density at the end region is expected to be increased by enhancement of ICRF heating and additional gas puffing at the plug/barrier cell which is the upstream cell of the end region.