ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Toshiki Takahashi
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 143-146
doi.org/10.13182/FST13-A16891
Articles are hosted by Taylor and Francis Online.
The mechanisms of toroidal field generation in translated field-reversed configuration (FRC) plasmas are investigated analytically and numerically. Although the radial electric field in the moving frame together with a translated plasma can be transformed into the toroidal field in the stationary frame, it is negligible and 107 order smaller than the confinement poloidal field. It is found that the axial electric field due to the friction force is insufficient to produce the experimentally observed toroidal field. The Lorentz force acting on electrons translating in the mirror field is found to be accountable for toroidal field generation.