ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Taihyeop Lho, Yong-Sup Choi, HyonJae Park
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 106-110
doi.org/10.13182/FST13-A16882
Articles are hosted by Taylor and Francis Online.
Hydrogen solubility of FLiNaK (LiF 46.5 mol% + NaF 11.5% + KF 42 mol%) were investigated with hydrogen plasma interaction. To use molten salt as liquid wall for fusion device, tritium retention property of the molten salt should be studied. Although there have been some reports on hydrogen solubility of FLiNaK, retention property of FLiNaK with hydrogen plasma interaction has not been reported yet. Hydrogen outgassing of molten FLiNaK was measured with RGA after interaction of hydrogen plasma. Hydrogen partial pressure of the RGA was calibrated with an H2 mass flow controller of 5sccm. Hydrogen plasma was generated with 500W ECR source and the molten FLiNaK was contained with heated crucible of diameter of 46mm and depth of 40mm. By measuring hydrogen ion density near the surface of FLiNaK, we evaluated dose of hydrogen to the FLiNaK and calculated retention percentage with measured outgassing amount of hydrogen. Compared to Henry's law, plasma-interacted-FLiNaK showed significantly large amount of hydrogen retention such as 10000 times.