ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
Nobuyuki Asakura et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 70-75
doi.org/10.13182/FST13-A16876
Articles are hosted by Taylor and Francis Online.
Design study of the magnetic configuration and divertor geometry for the “advanced divertor” in a Demo tokamak reactor is summarized. Equilibrium calculation code, TOSCA, was developed for the super-X divertor (SXD) design by introducing two parameters, i.e. location of the super-X null and a ratio of the poloidal magnetic fluxes at the super-X null to that at the separatrix. SXD has an advantage to increase connection length from the divertor null point to the divertor target (L//div), which is 1.6-1.8 times larger with increasing fSX, compared to that in the conventional long-leg divertor. Whereas flux expansion near the super-X null was increased, increase in the target wet area (Awet) was small. Snowflake divertor (SFD) magnetic configuration was produced by adjusting PFC locations and the current distribution. L//div was largely increased near the SF null in the conventional divertor size. Key issues remain: control scenario for SFnull and high plasma shaping should be developed, and appropriate SFD design is necessary. For the advanced divertor design, divertor coils inside TFC are preferable due to the maximum current and size.