ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Nobuyuki Asakura et al.
Fusion Science and Technology | Volume 63 | Number 1 | May 2013 | Pages 70-75
doi.org/10.13182/FST13-A16876
Articles are hosted by Taylor and Francis Online.
Design study of the magnetic configuration and divertor geometry for the “advanced divertor” in a Demo tokamak reactor is summarized. Equilibrium calculation code, TOSCA, was developed for the super-X divertor (SXD) design by introducing two parameters, i.e. location of the super-X null and a ratio of the poloidal magnetic fluxes at the super-X null to that at the separatrix. SXD has an advantage to increase connection length from the divertor null point to the divertor target (L//div), which is 1.6-1.8 times larger with increasing fSX, compared to that in the conventional long-leg divertor. Whereas flux expansion near the super-X null was increased, increase in the target wet area (Awet) was small. Snowflake divertor (SFD) magnetic configuration was produced by adjusting PFC locations and the current distribution. L//div was largely increased near the SF null in the conventional divertor size. Key issues remain: control scenario for SFnull and high plasma shaping should be developed, and appropriate SFD design is necessary. For the advanced divertor design, divertor coils inside TFC are preferable due to the maximum current and size.