ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
T. Takamatsu, T. Fujimoto, K. Masuda, K. Yoshikawa
Fusion Science and Technology | Volume 52 | Number 4 | November 2007 | Pages 1114-1118
Technical Paper | Nonelectric Applications | doi.org/10.13182/FST07-A1647
Articles are hosted by Taylor and Francis Online.
A new Inertial Electrostatic Confinement (IEC) fusion device has been manufactured as a compact neutron source. This device consists of double jacket chambers to provide sufficient water cooling, having the diameters of inner and outer chambers of, respectively, 20 cm and 30 cm. The effective water-cooling enabled the IEC device to operate at high cathode current of more than 80 mA. A target neutron yield of 1 × 107 has been achieved for cathode voltage of 80 kV and (cathode) current of 80 mA. The water jacket of a 5 cm width was designed as well to assure the sufficient reflection of 2.45 MeV D-D neutrons downward, where a thinner 1 cm thick water jacket is installed at the bottom. This non-uniformity of water jacket thickness resulted in increased neutron flux downward.